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Similar Matrices



Similar Matrices

Definition (Similar Matrices)

Let A and B be n x n matrices. A is similar to B, written A ~ B, if there
exists an invertible matrix P such that B = P~'AP.

Lemma

Similarity is an equivalence relation, i.e., for n X n matrices A, B and C
1. A ~ A (reflexive);
2. if A ~ B, then B ~ A (symmetric);
3. if A~ B and B ~ C, then A ~ C (transitive).

Proof.
1. Since A = I,AIl, and I;l =1, A= I;lAIn. Therefore, A ~ A.

2. Suppose A ~ B. Then there exists an invertible n x n matrix P such
that B = P~'AP. Multiplying both sides on the left by P, on the right
by P!, and simplifying gives us PBP~! = A. Therefore,

A= P H AP ), s0 A~B.



Proof. (continued)

3. Since A ~ B and B ~ C, there exist invertible n X n matrices P and Q
such that
B=P 'AP and C=Q 'BQ.

Thus
C=Q 'BQ=Q '(PT'AP)Q = (Q 'P HA(PQ) = (PQ) 'A(PQ),

where PQ is invertible, and hence A ~ C.



Definition

If A = [aj;] is an n X n matrix, then the trace of A is

tr(A) = z“: aii.
i=1

Lemma (Properties of trace)

For n x n matrices A and B, and any k € R,
1. tr(A + B) = tr(A) + tr(B);
2. tr(kA) = k- tr(A);
3. tr(AB) = tr(BA).



Proof.

The proofs of (1) and (2) are trivial. As for (3), ...



Recall that for any n x n matrix A, the characteristic polynomial of A is
ca(x) = det(xI — A),

and is a polynomial of degree n.

Theorem (Properties of Similar Matrices)
If A and B are n X n matrices and A ~ B, then
. det(A) = det(B);

. rank (A) = rank (B);

. tr(A) = tr(B);

- ea(x) = e (x);

. A and B have the same eigenvalues.

T o W N =



Proof.

Since A ~ B, there exists an n x n invertible matrix P so that B = P~'AP.

1. det(B) = det(P~'AP) = det(P~") - det(A) - det(P).

Since P is invertible, det(P™') = ﬁ(P), SO

det(B)

~det(A) - det(P) =

- det(P) - det(A) = det(A).

! 1
~ det(P) det(P)

Therefore, det(B) = det(A).
2. rank (B) = rank (P7'AP).
Since P is invertible, rank (P™'*AP) = rank (P7*A),

since P! is invertible, rank (P7'A) = rank (A).
Therefore, rank (B) = rank (A).

3. tr(B) = tr[(PT'A)P] = tr[P(P~'A)] = tr[(PP)A] = tr(IA) = tr(A).



Proof. (continued)
4.

cg(x) =det(xI —B) = det(xI — P 'AP)
det(xP 1P P 'AP)
det(P'xP — P 'AP)

= det[P™' (xI ~ A)P]
= det(P") - det(xI — A) - det(P)
= det(P™") - det(P) - det(xI — A)

Since P is invertible, det(P~') = TJ(P), SO
1
- -det(P) - det(xI — A) = det(xI — A) = .
cB(x) det(P) det(P) - det(x ) = det(x ) =ca(x)

5. Since the eigenvalues of a matrix are the roots of the characteristic
polynomial, cg(x) = ca(x) implies that A and B have the same
eigenvalues.
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Diagonalization Revisited

Recall that if A is an eigenvalue of A, then AX = AX for some nonzero vector
X in R™. Such a vector X is called a A-eigenvector of A or an eigenvector of
A corresponding to A.

Definition (Diagonalizable — rephrased)

An n X n matrix A is diagonalizable if A ~ D for some diagonal matrix D.

Remark ( Diagonalizability )
Determining whether or not a square matrix A is diagonalizable is done by
checking whether

the number of linearly independent eigenvectors
— geometric multiplicity

1

the multiplicity of each eigenvalue
— algebraic multiplicity



Example

-1 0
0 1
a (—1)-eigenvector of A since

LetA:[

w=[ St o)=L = enle]

Theorem
Suppose A is an n X n matrix.

1. The eigenvalues of A are the roots of ca (x).

2. The A-eigenvectors of A are all the nonzero solutions to (A — A)

X

}. Then A = —1 is an eigenvalue of A, and X = { (1) } is

—

n-



Problem

-2 0 0 0
. . 3 6 0 0
Determine all eigenvalues of A = 10 6 0
4 2 -1 1
Solution
x+2 0 0 0
-3 x-6 0 0
det(xI—A) = | 0 x-6 0 = (x+2)(x—6)(x—6)(x—1).
—4 —2 1 x—1
Thus, the eigenvalues of A are —2,6,6 and 1, precisely the elements on the
main diagonal of A. [ ]
Remark

In general, the eigenvalues of any triangular matrix are the entries on its
main diagonal.



Theorem

Let A be an n x n matrix.

1. A is diagonalizable if and only if R" has a basis {X1,X2,...,Xn} of
eigenvectors of A.
2. If {X1,%X2,...,Xn} are eigenvectors of A and form a basis of R*, then
P=[% % - %]

is an invertible matrix such that
P7'AP = diag(A1, A2, ..., An),

where \; is the eigenvalue of A corresponding to X;.

This result was covered earlier, but without the use of term basis.



Theorem

Let A be an n X n matrix, and suppose that A has distinct eigenvalues
A1, A2, ..., Ak. For each i, let X; be a Aj-eigenvector of A. Then
{X1,X2,...,Xx} is linearly independent.

Proof.

We need to show that t1% + ta%s + - + tiRe = 0 only has trivial solution
t; = -+ = tx = 0. Notice that

61AR] + t2ARKs + -+ - + AR = B AR + toAoRs + - + B \Kie = 0
61A%R) + 62A%R 4 -+ AR = AR b ASRe -+ AR = 0

t AR AT R = AT R +tidg K =10



Proof.

Xt 4+ tedeXe 4+ -+ tMF = 0
t1 )\%)_('1 =+ t2>\§§2 4+ -+ tk)\ifk E)
tlAlf_lfl =+ tz)\g_liz + e 4+ tkAt_lik = 6
(;
ti 0 0 0] /AY AL o AT
ta 0 O [AY A oo 5T
()?1 Xo D_('k) . . . . = Okxk.
0 0 0

0 0 0 ti] \A AL oo AT!



Proof.

Since \; are distinct, the Vandermonde matrix is invertible, hence,

tt 0 0 O
0 to 0 O

(X1 Xo ) = Okxk.
0 0 0

0 0 0 ¢t

X =0 foralli=1,---,k
U
ti=0 foralli=1,---,k

Only trivial solution is found. Hence, {X1,X2,...,Xx} is independent. |



Proof. ( Another proof left for you to study )
The proof is by induction on k, the number of distinct eigenvalues.

Basis. If k = 1, then {X1} is an independent set because X1 # On.

Suppose that for some k > 1, {X1,X2,...,Xk} is independent, where X; is an
eigenvector of A corresponding to A, 1 <i <k, and A1, A2,..., Ak are
distinct. (This is the Inductive Hypothesis.) Now suppose A1, A2, ..., A1

are distinct eigenvalues of A that have corresponding eigenvectors
X1,X2,...,Xk+1, respectively. Consider

t1X1 + toXo + -+ + tk+1§k+1 = 6n, for t1,to,... sttt € R (1)

Multiplying equation (1) by A (on the left) gives us



Proof. (continued)

t1AR] + toAXs + -+ - + tip1 ARk = 6n7
A
t1 MR + tadaRo 4 - - + bip 1 Akp 1 X1 = On.

Also, multiplying (1) by Ax41 gives us

t1 11+ t2 1 ®e 4 -t M1 K1 = On,

and subtracting (3) from (2) results in

t1 (M1 — M 1)R1 + t2 (A2 — Mep1)R2 + -+ + te(Ak — Ay 1)%ie = On.



Proof. (continued)

By the inductive hypothesis, {X1,X2,...,Xk} is independent, so

ti(>\i - )\k+1) =0 fori= 1,2,...k.
Since A1, A2, ..., Ak are distinet, (Aj — Ax41) # 0 fori=1,2,... k%, and thus
ti =0 for i =1,2,..., k. Substituting these values into (1) yields
trr1 X1 = On,

implying that tix4+1 = 0, since Xx41 # On.

Therefore, {X1,X2,...,Xkt1} is an independent set, and the result follows
by induction. ]



The next result is an easy consequence of the previous Theorem.

Theorem (Covered earlier, but now with a proof)

If A is an n X n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof.

Let {A\1, A2, ..., An} denote the n (distinct) eigenvalues of A, and let X; be
an eigenvector of A corresponding to Ai, 1 <i < n. By the previous
Theorem, {Xi,X2,...,Xn} is an independent set. A subset of n linearly
independent vectors of R* also spans R®, and thus {X1,X2,...,Xn} is a basis
of R". Thus A is diagonalizable. |



Problem

Is the matrix

0 -1 1
A= 8 6 —2
0 0 -3
diagonalizable?
Solution

Because A has characteristic polynomial
ca(x) = (x+3)(x = 2)(x - 4),
A has distinct eigenvalues —3,2 and 4.

Since A has three distinct eigenvalues, A is diagonalizable.



Problem (Covered earlier, but with different wording)

0 1 1
IsA=1] 1 0 1 | diagonalizable? Explain.
1 1 0

Solution

First, ca(x) = (x — 2)(x 4+ 1)?, so the eigenvalues of A are A\; = 2\ = —1,
and A3 = —1. Since the eigenvalues are not distinct, it isn’t immediately
obvious that A is diagonalizable. The general solution to (—I — A)X = 03:

-1 -1 —-110 1 1 110
-1 -1 -1/0|—=]10 0 0]O0
-1 -1 —-110 0 0 00

s X1 =

-1
1 and
0

—s —t,xo = s, and x3 =t for s,t € R, leading to basic solutions

that are linearly independent. Therefore, there is a basis of R? consisting of
eigenvectors of A, so A is diagonalizable.



Algebraic and Geometric Multiplicities



Algebraic and Geometric Multiplicities

Lemma (Technical but useful)

Let A be an n x n matrix, with independent eigenvectors {X1,X2,...,Xk}.
Extend {X1,X2,...,%Xk} to a basis {X1,X2,...,Xk,...,Xn} of R* and let
P= [ X1 Xo o X ] If A1, A2, ..., Ak are the (not necessarily
distinct) eigenvalues corresponding to Xi,Xa, ..., Xk, then

PflAP _ diag()\l,...,)\k) B

O(n—10)xk A |’

where B is an k X (n — k) matrix and A; is an (n — k) x (n — k) matrix.



Proof.

[ AR | - | ARk | AR | - | A% ] = [ M= | 0 | AR | ARqr | | AR ]
Il
Al R | R | -+ | %a ] I
A1 al k+1 cee ar k1
- ) = - = Ak ak,l.<+1 e ak,l;+1
[R [ | R R | | %] T ——
0] . X
an k+1 ceeap k41
T T
P ARy - PTlAR,

3

diag(A1,...,Ak) B
AP =P ’
[ O(n—10) x I Ay
kI3
— diag(A1,...,Ax) B
P AP =
[ O(n—1)xk Ay



Proof. (Another proof)
Recall that {€1,8&2,...,8y} is the standard basis of Ryn. Since I, = PP,
[ & -+ & |=P'"P = P '[% X - % ]
= [P'®y P'%, - PR, ]
Thus for each j, 1 <j <n, P7'%j; = &. Also,
P'AP = P 'A% % - % |
= [P'A%; P 'A%, - PT'AX, ],
so the j*h column of P7'AP, 1 < j <k, is equal to
PTHAR)) = PTI(AK) = N(PTIR) = Ajd.

This gives us the first k columns of P"*AP, and the result follows.



Definition

Let A be an n X n matrix and A € R. The eigenspace of A corresponding to
A is the set
Er(A) = {X e R" | AX = XX},

Remark

1. The eigenspace Ex(A) is indeed a subspace of R" because
Ex(A)={ReR" |AR= A} = {R€R" | Al — A)X = 0o} = null(A\I — A).

2. If X is not an eigenvalue of A, then E,(A) = {0}.



Definition

1. If A is an n X n matrix and X is an eigenvalue of A, then the (algebraic)
multiplicity of A is the largest value of m for which

ca(x) = (x = )"g(x)

for some polynomial g(x), i.e., the multiplicity of X is the number of
times that A occurs as a root of ca(x).

2. dim(Ex(A)) is called the geometric multiplicity of A.

Lemma

If A is an n X n matrix, and A is an eigenvalue of A of multiplicity m, then
dim(Ex(A)) < m,
that is,

Geometric multiplicity < Algebraic multiplicity.



Proof.
Let d = dim(Ex(A)), and let {X1,X2,...,X4} be a basis of Ex(A). As a

consequence, we know that there exists an invertible n X n matrix P so that

diag(\,...,\) B ]:{ Ay B}

P'AP =
O(n—dyxa Ay Om—ayxa A1

where Bisd X (n—d) and Ay is (n —d) x (n—d).

Define A’ = P *AP. Then A ~ A’, so A and A’ have the same
characteristic polynomial. Thus

ca(x) = car(x) =det(xI —A') = det { (x — M)l -B }

Om—dyxd XIn—a —Ag
= det[(x — A\)Ia] det(xln_a — A1)
(x = A)ea, (x)
)

Since A has multiplicity m, d < m, and therefore dim(Ex(A)) < m as
required. |



Characterizing Diagonalizable Matrices



Characterizing Diagonalizable Matrices

The crucial consequence of this Lemma is the characterization of matrices
that are diagonalizable.

Theorem (Covered earlier, here with new terminology)
For an n x n matrix A, the following two conditions are equivalent.
1. A is diagonalizable.

2. For each eigenvalue X of A, dim(Ey(A)) is equal to the multiplicity of
A, de.,

Diagonalizable

0

Geometric multiplicity = Algebraic multiplicity, for all A.



Problem (Covered earlier, here with new terminology)

3 1 §
If possible, diagonalize the matrix A = 2 1 0 |. Otherwise,
-1 0 -3

explain why A is not diagonalizable.

Solution

ca(x) = (x — 3)(x+ 1)?, so A has eigenvalues \; = 3, \a = A3 = —1. Find
the dimension of E_;(A) by solving the linear system (—I — A)X = 0.

4 -1 —610 1 0 210
-2 =2 0Oj0 =0 1 =210
1 0 210 0 0 00

From this, we see that dim(E_;(A)) = 1. Since —1 is an eigenvalue of
multiplicity two, A is not diagonalizable.



Problem (Covered earlier, here with new terminology)

Let

1 0 1 1 1 0
A=|0 1 0 and B=|0 1 0
0 0 2 0 0 2

Show that A is diagonalizable, and that B is not diagonalizable.

Solution

Both A and B are triangular matrices, so we immediately see that A and B
have the same eigenvalues: \; = A2 = 1 and A3 = 2. Thus for each matrix,
1 is an eigenvalue of multiplicity two.

Solving the system (I — A)X = Os:
0 0 1 0 0 1
0 0 Of—=1]0 0 0],
0 0 -1 0 0 0

we see that there are two parameters in the general solution, so
dim(Eq(A)) = 2. Therefore, A is diagonalizable.



Solution (continued)

Solving the system (I — B)X = Os:

0 -1 0 010
0 0 o|l—=]o0o0 1]/,
0 0 -1 00 0

we see that the general solution has only one parameter, so
dim(E1(B)) = 1. However, the algebraic multiplicity of A =1 is 2.
Therefore, B is not diagonalizable.



Complex Eigenvalues



Complex Eigenvalues

If a matrix has eigenvalues that have imaginary parts (and aren’t simply
real numbers), we can still find eigenvectors and possibly diagonalize the

matrix.
Problem
. . . . . 1 1
Diagonalize, if possible, the matrix A = { 11 ]
Solution
o o X — 1 *1 .2 N
ca(x) =det(xl — A) = 1 ‘-1 ‘ =x —2x+2.

The roots of ca(x) are distinct complex numbers: A\ = 1+4+1iand A2 =1 —1,
so A is diagonalizable. Corresponding eigenvectors are

)?1=|:EI:| and }?2=|:i:|,

respectively.



Solution (continued)

A diagonalizing matrix for A is

and

Remark

Notice that A is a real matrix, but has complex eigenvalues (and
eigenvectors).



Eigenvalues of Real Symmetric Matrices



Eigenvalues of Real Symmetric Matrices

Theorem

The eigenvalues of any real symmetric matrix are real.

Proof.

Let A be an n x n real symmetric matrix, and let A be an eigenvalue of A.
To prove that A is real, it is enough to prove that A = A, i.e., A is equal to
its (complex) conjugate.

We use A to denote the matrix obtained from A by replacing each entry by

its conjugate. Since A is real, A = A.

Suppose
Z1
72

L
I

Zn

is a A-eigenvector of A. Then AX = AX.



Proof. (continued)

71
Z2
Let c = XTX = [ 71 Zo -+ Zn }
Zn
Then ¢ = 2121 + 2272 + -+ + ZnZn = |zl|2 + |zz|2 4o+ |z,,|2; since X # 6, c
is a positive real number. Now
de = AE'R) == ()R
= A)'X=x"ATR
= XTAR (since A is symmetric)
= "AX  (since A is real)
= AR =x"() =x" X
= AE"R)
= Jc

Thus, Ac = Ac. Since ¢ # 0, it follows that A = X, and therefore \ is real. W
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